
Step 4. Bounds on the Riemann zeta function

We wish to bound F (s). We start from (2), when

|F (s)| ≤

∣

∣

∣

∣

ζ ′(s)

ζ(s)

∣

∣

∣

∣

+ |ζ(s)| ,

and give upper bounds on

|ζ(s)| , |ζ ′(s)| and

∣

∣

∣

∣

1

ζ(s)

∣

∣

∣

∣

.

We have shown that ζ(s) has no zeros in Re s ≥ 1. We will give upper and
lower bounds on ζ(s) and its derivative in the slightly larger region of

s = σ+it with |t| ≥ 2 and σ > 1−
a

log |t|
,

for any a > 0 as long as σ > 1/2.

Because ζ(σ − it) = ζ(σ+it) and thus

|ζ(σ − it)| =
∣

∣

∣
ζ(σ+it)

∣

∣

∣
= |ζ(σ+it)| ,

it suffices to give bounds for t positive. For simplicity write η(t) = a/ log t.

4.1. Approximate ζ(s) by a finite sum.

In the next important result we approximate the Riemann zeta function by
a finite sum of its Dirichlet series. First recall Theorem 6.11;

∑

1≤n≤N

1

ns
= 1 +

1

s−1
+

N1−s

1−s
− s

∫ N

1

{u}
du

us+1
, (28)

for s 6= 1. Let N →∞ to get (10) :

ζ(s) = 1 +
1

s−1
− s

∫ ∞

1

{u}

u1+s
du.

We can only take the limit for Re s > 1 for thenN1−s/ (1−s)→ 0 asN →∞.
But once the result has been proved we see that the right hand side is defined
for Re s > 0, s 6= 1, becoming the definition of the Riemann zeta function in
that larger plane. If we now subtract these last two results we get
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Theorem 6.24 For all Re s > 0, s 6= 1, and all integers N ≥ 1,

ζ(s) =
N
∑

n=1

1

ns
+

N1−s

s−1
+ rN (s) , (29)

where the remainder is given by

rN (s) = −s

∫ ∞

N

{u}

us+1
du (30)

and satisfies

|rN (s)| ≤ |s|

∫ ∞

N

1

uσ+1
du =

|s|

σNσ
.

Note If you put N = 1 in Theorem 6.24 you recover Theorem 6.12 (no
surprises there) while, if you let N →∞, and assume Re s > 1 in which case

lim
N→∞

N1−s

s−1
= 0,

we recover the Dirichlet Series definition of the zeta function.

The purpose of Theorem 6.24 is to replace the infinite Dirichlet series by a
finite series (called a Dirichlet Polynomial) and its strength is the ability to
choose an appropriate length of polynomial N , normally depending on s.

4.2 Upper bound on ζ(s) .

With a > 0 fixed and t > 2 we have defined η(t) = a/ log t. The important
observation to make below is that for t ≥ 2 we have

tη(t) = exp (η(t) log t) = exp

(

a

log t
log t

)

= ea,

a constant independent of t.

Theorem 6.25 When σ ≥ 1− η(t), σ ≥ 1/2 and t ≥ 2 we have

|ζ(σ+it)| ≤ ea (log t+ 5) . (31)
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Proof In Theorem 6.24 with t ≥ 2 given choose N = [t], and estimate each
term in (29) separately. The choice of N = [t] with t ≥ 2 implies N ≥ 2 and
N ≤ t < N + 1. Then

∣

∣

∣

∣

∣

N
∑

n=1

1

ns

∣

∣

∣

∣

∣

≤
N
∑

n=1

1

nσ
≤

N
∑

n=1

1

n1−η(t)
≤ Nη(t)

N
∑

n=1

1

n
≤ ea

N
∑

n=1

1

n
,

since σ ≥ 1− η(t) and N ≤ t. But, a result often seen in this course, is

N
∑

n=1

1

n
= 1 +

N
∑

n=2

1

n
≤ 1 +

∫ N

1

dt

t
= 1 + logN.

Also
∣

∣

∣

∣

N1−s

s−1

∣

∣

∣

∣

=
N1−σ

|σ−1+it|
≤

Nη(t)

|t|
≤

ea

2
,

since t ≥ 2. Finally

|rN (s)| ≤
|σ+it|

σNσ
≤

1 + t/σ

Nσ
≤

1 + 2t

N1−η(t)
since σ ≥ 1/2

≤ ea
2N + 3

N
since t ≤ N + 1

= ea
(

2 +
3

N

)

≤
7

2
ea

since N ≥ 2. Combine to get the stated result. �

Note this result, and other bounds on the Riemann zeta function require
t > 2 (and thus t < −2). See the appendix for |t| ≤ 2.

4.3 Upper bound on ζ ′(s)

Next we bound |ζ ′(s)| from above. You can start by differentiating (28)
w.r.t s. Alternatively, if you dislike differentiating under an integral you can
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repeat the method in Chapter 1 and apply Partial Summation in

∑

1≤n≤N

log n

ns
=

N logN

N s
−

∫ N

1

u
d

du

(

log u

us

)

du+

∫ N

1

{u}
d

du

(

log u

us

)

du

=
N1−s logN

1−s
−

1

(1−s)2
(

N1−s − 1
)

+

∫ N

1

{u}
d

du

(

log u

us

)

du,

after integrating by parts a number of times. Thus

−
N
∑

n=1

log n

ns
= −

1

(s−1)2
+
− (1−s)N1−s logN +N1−s

(1−s)2

−

∫ N

1

{u}

u1+s
du+ s

∫ N

1

{u} log u

u1+s
du,

for integral N ≥ 1 and s 6= 1. Assume Re s > 1 and let N →∞ to get.

ζ ′(s) = −
1

(s−1)2
−

∫ ∞

1

{u}

us+1
du+ s

∫ ∞

1

{u} log u

us+1
du,

which is what we would have got on differentiating (28) directly. We can see
that the integrals here converge for Re s > 0.

Subtracting these last two results gives an approximation to the derivative
of the Riemann zeta function by a partial sum of its Dirichlet series,

Corollary 6.26

ζ ′(s) = −
N
∑

n=1

log n

ns
−

N1−s logN

s−1
−

N1−s

(s−1)2
− I1 (s) + sI2 (s) , (32)

where

I1 (s) =

∫ ∞

N

{u}

us+1
du and I2 (s) =

∫ ∞

N

{u} log u

us+1
du.
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Leaving it to the student, each term can be estimated, giving

Theorem 6.27 For σ ≥ 1− η(t) and t > 2 we have

|ζ ′(σ+it)| ≤ ea (log t+ 7/4)2 . (33)

Proof Exercise. �

4.4. Upper bounds for Re s ≥ 1.

Below we use these upper bounds first for Re s > 1. This is equivalent to
choosing a = 0 in the results above when we then get, for t ≥ 2,

|ζ(σ+it)| ≤ (log t+ 5) and |ζ ′(σ+it)| ≤ (log t+ 7/4)2 . (34)

4.5. Lower bound for ζ(s).

We give an upper bound for |ζ−1 (σ+it)| or, equivalently, a lower bound for
|ζ(σ+it)|. In fact we go further and bound it both away from 0 and to the
left of the line Re s = 1. Earlier we proved that ζ(s) is non-zero in Re s ≥ 1
but now we will have a region free of zeros to the left of Re s = 1, i.e. a
zero-free region.

Lemma 6.28 For t ≥ 2 and 2 ≥ σ ≥ 1 + δ(t),

|ζ(σ+it)| ≥
1

215 (log t+ 6)7
, (35)

where

δ(t) =
1

219 (log t+ 6)9
. (36)

Proof To get a lower bound in this region start from the important

|ζ(σ)|3 |ζ(σ+it)|4 |ζ(σ+2it)| ≥ 1,

valid for σ > 1. We can apply (34) to the ζ(σ+2it) term, when

|ζ(σ+2it)| ≤ log 2t+ 5 = log t+ log 2 + 5 ≤ log t+ 6,

say, where 6 is simply chosen as the smallest integer larger than 5 + log 2.
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For the ζ(σ) term we can recall from Chapter 1 that

|ζ(σ)| = 1 +
∞
∑

n=2

1

nσ
≤ 1 +

∫ ∞

1

dy

yσ
= 1 +

1

σ−1
=

σ

σ−1
≤

2

σ−1
,

since σ < 2. Hence

1 ≤ |ζ(σ)|3 |ζ(σ+it)|4 |ζ(σ+2it)| ≤

(

2

σ−1

)3

|ζ(σ+it)|4 (log t+ 6) ,

which rearranges as

|ζ(σ+it)| ≥

(

σ−1

2

)3/4
1

(log t+ 6)1/4
≥

(

δ(t)

2

)3/4
1

(log t+ 6)1/4
.

The result of the theorem now follows on substituting in δ(t). �

The question you should ask, why this choice of δ(t)? Answer, because
of the next result. These two results can be combined as one, but since their
proofs are so different I have separated them.

Theorem 6.29 For t ≥ 2 and 1− δ(t) ≤ σ ≤ 1 + δ(t),

|ζ(σ+it)| ≥
1

216 (log t+ 6)7
.

Note that this is half the size of the lower bound in Lemma 6.28.

Proof Write σt = 1 + δ(t) . We are assuming

1− δ(t) ≤ σ < σt = 1 + δ(t) ,

and so, for such σ, we have 0 < σt − σ ≤ 2δ(t).

Move along a horizontal line from σt + it to σ+it. This time σ may be < 1
but since δ(t) ≤ 1/ log t we can use the results of Theorem 6.27 with a = 1,
so |ζ ′(y + it)| ≤ e (log t+ 7/4)2 for y ≥ 1− 1/ log t.

Then

|ζ(σ+it)− ζ(σt + it)| =

∣

∣

∣

∣

∫ σ

σt

ζ ′(y + it) dy

∣

∣

∣

∣

≤ e (σt − σ) (log t+ 6)2 .

≤ 2eδ(t) (log t+ 6)2 , (37)
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by (33), using log t + 7/4 ≤ log t + 6 simply so that the bounds in (35) and
(37) are comparable.

But how does this upper bound on a difference, (37) , give a lower bound on
ζ(σ+it)?

Idea If w, z ∈ C and |z − w| is “small” then z and w are ‘about’ the same
size. Mathematically, assume |z − w| ≤ |w| /2. Recall the triangle inequality
in the form |a− b| ≥ |a|−|b| for a, b ∈ C (proof |a| = |a− b+ b| ≤ |a− b|+|b|
by the ‘usual’ form of the triangle inequality. Rearrange to get result.) Using
this

|z| = |w − (w − z)| ≥ |w| − |w − z| ≥ |w| −
|w|

2
=
|w|

2
, (38)

i.e. we obtain a lower bound on |z|.

Apply this with z = ζ(σ+it) and w = ζ(σt + it) . Then |z − w| ≤ |w| /2 is
satisfied if the upper bound in (37) is less than half the lower bound in (35).
That is, if

2eδ(t) (log t+ 6)2 ≤
1

2

(

δ(t)

2

)3/4
1

(log t+ 6)1/4
.

This rearranges to

δ(t) ≤
1

211e4 (log t+ 6)9
,

which is satisfied by our choice of δ(t) in (36).

From |z − w| ≤ |w| /2 it follows, by (38) , that |z| ≥ |w| /2, i.e.

|ζ(σ+it)| ≥
1

2
|ζ(σt + it)| ≥

1

216 (log t+ 6)7
(39)

by Lemma 6.28. �
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4.6. Upper bound on F (s) .

To combine the three bounds on ζ, ζ ′ and 1/ζ they need to be comparable.
For this, note that for σ > 1− 1/ log t,

|ζ(σ+it)| ≤ e (log t+ 5) ≤ e (log t+ 6) ,

|ζ ′(σ+it)| ≤ e

(

log t+
7

4

)2

≤ e (log t+ 6)2 ,

are now comparable with the lower bound in Theorem 6.29. Though stated
for t > 2 they are valid for |t| > 2 as long as t is replaced by |t| in the bounds.
Hence

Corollary 6.30 For 2 > σ ≥ 1− δ(t) and |t| > 2

F (σ+it) ≤ 219 (log |t|+ 6)9 .

Proof Looking back at the definition of F (s),

|F (σ+it)| ≤
|ζ ′(σ+it)|

|ζ(σ+it)|
+ |ζ(σ+it)|

≤ e (log |t|+ 6)2 216 (log |t|+ 6)7 + (log |t|+ 6)

≤ 219 (log |t|+ 6)9 .

�

We in fact only want a weak version of this. For t > 2 we have 6 < 8.65...×
log t so log t+ 6 ≤ 9.65...× log t and thus

F (σ+it)≪ log9 |t|

for t > 2.

Theorem 6.29 implies that ζ(σ+it) has no zeros in the region

σ > 1−
1

219 (log t+ 6)9
, |t| ≥ 2.

This is called a zero-free region. You should draw this region to see how,
the larger you take t, the less you can go to the left of the σ = 1 line. No
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one has yet proved that there exists δ > 0 such that ζ(s) has no zeros with
s : Re s > 1− δ.

The Riemann Hypothesis states that ζ(s) has no zeros with s : Re s > 1/2.
It can be shown that this is equivalent to the statement that all zeros ρ of
ζ(s) which satisfy 0 < Re ρ < 1 in fact satisfy Re s = 1/2.

Zeros with small imaginary parts.

The above results are valid for |t| > 2. What of |t| ≤ 2?

On Re s = 1 we have ζ(s) 6= 0 and thus there exists η > 0 such that |ζ(s)| > η
when |t| < 2. Yet ζ(s) has a continuation to the half plane Re s > 0, s 6= 1 on
which it is holomorphic, in particular, continuous. This means there exists
κ1 > 0 such that |ζ(s)| > η/2 when |t| < 2 and 1 ≥ σ > 1 − κ1. Similarly,
it can be shown that F (s) ≪ 1 when |t| < 2 and 1 ≥ σ > 1 − κ1, provided
κ1 < 1/2. (See Additional Notes.)

It is possible, and see Jameson, Proposition 5.3.1, to prove

Proposition 6.31 ζ(s) has no zeros in the rectangle

3

4
≤ σ ≤ 1 and |t| ≤

5

2
.

Proof Not given. �

Divergence of ζ(1+it) for t 6= 0.

In Chapter 1 it was shown that the series defining ζ(s) converges absolutely
for Re s > 1. In the Problem sheet you are asked to show that the series
diverges for Re s < 1. That leaves the question of what happens on the
vertical line Re s = 1.

An interesting application of Theorem 6.24 is

Theorem 6.32
∞
∑

n=1

1

n1+it

diverges for all t ∈ R.
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Proof The result if known if t = 0. If t < 0 we can look at the conjugate of
the series and assume t > 0 as we now do.

Rearrange Theorem 6.24 as

N
∑

n=1

1

ns
= ζ(s)−

N s−1

s−1
− rN (s) ,

where |rN (s)| ≤ |s| /σNσ. With s = 1+it and t > 0, we have

N
∑

n=1

1

n1+it
= ζ(1+it) +

1

t
ei(π/2−t logN) + rN (1+it)

where |rN (1+it)| ≤ (1+|t|) /N.

As N →∞ then rN (1+it)→ 0 while the

ζ(1+it) +
1

t
ei(π/2−t logN)

are values on the circle, centre ζ(1+it), of radius 1/t. This sequence of points
do not converge but instead go forever round the circle. Hence the sequence
of partial sums

∑N
n=1 n

−1−it has no limit point as N →∞, i.e. the sequence

does not converge. This is the definition of the series
∑∞

n=1 n
−1−it diverging.

�

38


