Step 4. Bounds on the Riemann zeta function
We wish to bound F(s). We start from (2), when

¢'(s)
¢(s)

[F(s)] < + 1)

and give upper bounds on

1
C(s)], |¢'(s)| and "
[C(s)], 1€ (s)] o)
We have shown that ((s) has no zeros in Res > 1. We will give upper and
lower bounds on ((s) and its derivative in the slightly larger region of
s = o+it with [t| > 2 and 0>1—L,
log [t]
for any a > 0 as long as o0 > 1/2.

Because ((0 — it) = ((o+it) and thus

C(o = i) = [clo+i)| = [¢(o+ib)],

it suffices to give bounds for ¢ positive. For simplicity write n(t) = a/logt.

4.1. Approximate ((s) by a finite sum.

In the next important result we approximate the Riemann zeta function by
a finite sum of its Dirichlet series. First recall Theorem 6.11;

1 1 N N du
Y =1+ — _ B 9
ns + s—1 + 1—s 8/1 {u} ustl’ (28)

1<n<N

for s # 1. Let N — oo to get (10) :

C(s)—1+1—s/looiﬁsdu.

s—1

We can only take the limit for Re s > 1 for then N'7%/(1—s) — 0 as N — oo.
But once the result has been proved we see that the right hand side is defined
for Res > 0, s # 1, becoming the definition of the Riemann zeta function in
that larger plane. If we now subtract these last two results we get
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Theorem 6.24 For all Res > 0, s # 1, and all integers N > 1,

N les

g(s)zzi+ — v (s), (29)

where the remainder is given by

ry (s) = —s NOO i“jl du (30)

and satisfies

1 5]
O e

Note If you put N = 1 in Theorem 6.24 you recover Theorem 6.12 (no
surprises there) while, if you let N — oo, and assume Re s > 1 in which case

1-s

1\}1—I>Icl>o s—1 =0

we recover the Dirichlet Series definition of the zeta function.

The purpose of Theorem 6.24 is to replace the infinite Dirichlet series by a
finite series (called a Dirichlet Polynomial) and its strength is the ability to
choose an appropriate length of polynomial N, normally depending on s.

4.2 Upper bound on ((s) .

With a > 0 fixed and ¢ > 2 we have defined 7(t) = a/logt. The important
observation to make below is that for ¢ > 2 we have

t"® = exp (n(t) logt) = exp <16;t log t> = e,
0

a constant independent of ¢.
Theorem 6.25 Wheno >1—n(t), 0 > 1/2 and t > 2 we have

|C(o+it)] < e (logt +5). (31)
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Proof In Theorem 6.24 with ¢ > 2 given choose N = [t], and estimate each
term in (29) separately. The choice of N = [t] with ¢ > 2 implies N > 2 and
N <t< N+ 1. Then

N S T Al N
- = - n(t) = a -
Shleytey Loy teayt

since 0 > 1 —n(t) and N < t. But, a result often seen in this course, is

N N N

1 1 dt

— =1 — <1 — =1+ 1log N.
)RS S +/1 1o

Also
Ni-c Nn(t) a

_ N <
lo—1+it] = Jt] — 2

since t > 2. Finally

o +it| < 1+t/o o L2

Irn (s)] SN No S Niom Sinceo >1/2
2N +3
< e i since t < N +1
3

= (24 =

“(¥)

7
< —e®
- 2

since N > 2. Combine to get the stated result. [ |

Note this result, and other bounds on the Riemann zeta function require
t > 2 (and thus t < —2). See the appendix for |t| < 2.

4.3 Upper bound on ¢(s)

Next we bound |¢'(s)| from above. You can start by differentiating (28)
w.r.t s. Alternatively, if you dislike differentiating under an integral you can
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repeat the method in Chapter 1 and apply Partial Summation in

logn  Nlog N Nod [logu logu
Z = e —/1 udu( du + /{u} du

1<n<N

N'=*log N 1

1—s _(1—3) (W =1) /{} (logSU) "

after integrating by parts a number of times. Thus

logn 1 —(1—s)N'"*log N + N'=#
- Z = 3 T 2
(s—1) (1—s)
N {u} N {u} logu
1+sdu ults du,

1
for integral N > 1 and s # 1. Assume Res > 1 and let N — oo to get.

T

which is what we would have got on differentiating (28) directly. We can see
that the integrals here converge for Re s > 0.

Subtracting these last two results gives an approximation to the derivative
of the Riemann zeta function by a partial sum of its Dirichlet series,

Corollary 6.26

N
logn  N'®logN  N!'=
= -y NN

ns s—1 (3—1)2 — I, (s) + sl (s), (32)

n=1

Il(s)—/oo{}du and I (s) = Oo{u}ﬂdu.

N u9+1 N ustl
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Leaving it to the student, each term can be estimated, giving
Theorem 6.27 Foro >1—n(t) and t > 2 we have
¢ (0 +it)| < e (logt 4 7/4)°. (33)

Proof Exercise. [ |

4.4. Upper bounds for Res > 1.

Below we use these upper bounds first for Res > 1. This is equivalent to
choosing @ = 0 in the results above when we then get, for ¢ > 2,

IC(o+it)] < (logt+5) and |¢'(o+it)| < (logt +7/4)*. (34)

4.5. Lower bound for ((s).

We give an upper bound for |¢! (o +it)| or, equivalently, a lower bound for
|C(o+1it)|. In fact we go further and bound it both away from 0 and to the
left of the line Res = 1. Earlier we proved that ((s) is non-zero in Res > 1
but now we will have a region free of zeros to the left of Res = 1, i.e. a
zero-free region.

Lemma 6.28 Fort>2 and2 >0 > 1+ 6(t),

1
o) > —
6 = 215 (logt + 6)"

where
1

T oW (logt + 6)°

o(t)
Proof To get a lower bound in this region start from the important
@) ¢ +it)]" [¢(o+2it)] > 1,
valid for 0 > 1. We can apply (34) to the ((o+2it) term, when
|C(o+2it)] <log2t+5=logt+log2+5<logt+ 6,

say, where 6 is simply chosen as the smallest integer larger than 5 + log 2.
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For the ((0) term we can recall from Chapter 1 that

o0
1 >~ d 1 o 2
\C(o—)\—1+2n0§1+/ Yoy = <
n=2 1

since o < 2. Hence

L2 ) o inl* o+ 2001 < (25 ) Toto+in)l* togt +6),

which rearranges as

Clo+it)| > (U_l)w ! > (5(t>>3/4 L
o\ 2 (logt+6)"* — \ 2 (logt 4+ 6)"/*

The result of the theorem now follows on substituting in (). |

The question you should ask, why this choice of §(¢)? Answer, because
of the next result. These two results can be combined as one, but since their
proofs are so different I have separated them.

Theorem 6.29 Fort>2 and 1 —46(t) <o <146(t),

. 1
it ot
Note that this is half the size of the lower bound in Lemma 6.28.
Proof Write o, =1+ 6(t) . We are assuming
1-0(t)<o<o,=14+06(t),

and so, for such o, we have 0 < 0, — o < 24(1).

Move along a horizontal line from o, + it to o+7t. This time o may be < 1
but since 0(t) < 1/logt we can use the results of Theorem 6.27 with a = 1,
so |¢'(y +it)| < e(logt +7/4)% for y > 1 —1/logt.

Then

IC(o+it) — C(oy +it)] = <e(oy—o)(logt+6)°.

/ C'(y + it) dy

< 2ed(t) (logt +6)°, (37)
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by (33), using logt + 7/4 < logt + 6 simply so that the bounds in (35) and
(37) are comparable.

But how does this upper bound on a difference, (37), give a lower bound on
C(o+it)?

Idea If w,z € C and |z — w| is “small” then z and w are ‘about’ the same
size. Mathematically, assume |z — w| < |w| /2. Recall the triangle inequality
in the form |a — b| > |a|—|b| for a,b € C (proof |a| = |a — b+ b| < |a — b|+D]
by the ‘usual’ form of the triangle inequality. Rearrange to get result.) Using
this

fwl _ vl

e

|2 = |w = (w = 2)| = [w] = |w— 2| = Jw| -
i.e. we obtain a lower bound on |z|.
Apply this with z = ((0+it) and w = ((o; + it) . Then |z — w| < |w| /2 is
satisfied if the upper bound in (37) is less than half the lower bound in (35).
That is, if
5(75))3/4 1
2 (logt +6)"/*

, 1
2e0(t) (logt +6)" < 5 (

This rearranges to

1
i(t) < 5
21t (logt + 6)

which is satisfied by our choice of 6(¢) in (36).
From |z —w| < |w| /2 it follows, by (38), that |z] > |w| /2, i.e.

) 1 . 1
|C(o+it)| > 3 |C(oy + 1t)| > W (39)

by Lemma 6.28. [ ]
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4.6. Upper bound on F(s).

To combine the three bounds on ¢, ¢" and 1/¢ they need to be comparable.
For this, note that for 0 > 1 —1/logt,

|C(o+it)] < e(logt+5)<e(logt+6),
7\ 2
I('(o+it)] < e <logt + 4> < e(logt+6)*,

are now comparable with the lower bound in Theorem 6.29. Though stated
for t > 2 they are valid for |¢| > 2 as long as ¢ is replaced by |¢| in the bounds.
Hence

Corollary 6.30 For2 >0 >1—4§(t) and [t| > 2
F(o+it) <2 (log|t| +6)” .
Proof Looking back at the definition of F(s),

. I (o +1t)] .
|F(o+it)] < W—HC(U—HM

IN

e (log |t| + 6)*2' (log |t| + 6)" + (log |¢| + 6)

IN

21 (log |t| 4 6)° .
|

We in fact only want a weak version of this. For ¢ > 2 we have 6 < 8.65... X
logt so logt + 6 < 9.65... X logt and thus

F(o+it) < log” |t]
for ¢ > 2.

Theorem 6.29 implies that ((o+it) has no zeros in the region

1

e e —
219 (logt + 6)

it > 2.

This is called a zero-free region. You should draw this region to see how,
the larger you take ¢, the less you can go to the left of the o = 1 line. No
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one has yet proved that there exists § > 0 such that ((s) has no zeros with
s:Res>1-9.

The Riemann Hypothesis states that ((s) has no zeros with s : Res > 1/2.
It can be shown that this is equivalent to the statement that all zeros p of
((s) which satisfy 0 < Rep < 1 in fact satisfy Res = 1/2.

Zeros with small imaginary parts.
The above results are valid for [¢| > 2. What of || < 27

On Re s = 1 we have ((s) # 0 and thus there exists 7 > 0 such that |((s)| > 7
when [t| < 2. Yet ((s) has a continuation to the half plane Res > 0, s # 1 on
which it is holomorphic, in particular, continuous. This means there exists
k1 > 0 such that [((s)| > 7/2 when [t| < 2 and 1 > ¢ > 1 — ;. Similarly,
it can be shown that F(s) < 1 when [t| < 2 and 1 > ¢ > 1 — Kk, provided
k1 < 1/2. (See Additional Notes.)

It is possible, and see Jameson, Proposition 5.3.1, to prove

Proposition 6.31 ((s) has no zeros in the rectangle

<o <1land |t| <

DO | Ot

Proof Not given. |

Divergence of ((1-+it) for t # 0.

In Chapter 1 it was shown that the series defining ((s) converges absolutely
for Res > 1. In the Problem sheet you are asked to show that the series
diverges for Res < 1. That leaves the question of what happens on the
vertical line Res = 1.

An interesting application of Theorem 6.24 is

Theorem 6.32

[ee)

1
Z nl+it

n=1

diwverges for all t € R.
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Proof The result if known if t = 0. If ¢ < 0 we can look at the conjugate of
the series and assume ¢ > 0 as we now do.

Rearrange Theorem 6.24 as

N 1 stl
> =) - T~ (9),
n=1

where |ry (s)| < |s| /oN?. With s = 1+it and ¢ > 0, we have

N

1 1.
> — = C(+it) + ;e“”/?*“‘)gm + v (1+it)
n=1

where |ry (14it)| < (1+]t]) /N.
As N — oo then ry (1+it) — 0 while the

1.
14t — i(m/2—tlog N)
C(141t) + e

are values on the circle, centre ((1+1it), of radius 1/¢. This sequence of points
do not converge but instead go forever round the circle. Hence the sequence
of partial sums 25:1 n~!'=% has no limit point as N — oo, i.e. the sequence

does not converge. This is the definition of the series Y - n~ '~ diverging.
|
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